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SUMMARY Over a century of bacteriophage research has uncovered a plethora of fun-
damental aspects of their biology, ecology, and evolution. Furthermore, the introduction
of community-level studies through metagenomics has revealed unprecedented insights
on the impact that phages have on a range of ecological and physiological processes. It
was not until the introduction of viral metagenomics that we began to grasp the aston-
ishing breadth of genetic diversity encompassed by phage genomes. Novel phage
genomes have been reported from a diverse range of biomes at an increasing rate,
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which has prompted the development of computational tools that support the multile-
vel characterization of these novel phages based solely on their genome sequences.
The impact of these technologies has been so large that, together with MAGs
(Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes),
which are now officially recognized by the International Committee for the Taxonomy
of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on
genomic sequence information. Even though the available tools have immensely con-
tributed to our knowledge of phage diversity and ecology, the ongoing surge in soft-
ware programs makes it challenging to keep up with them and the purpose each one
is designed for. Therefore, in this review, we describe a comprehensive set of currently
available computational tools designed for the characterization of phage genome
sequences, focusing on five specific analyses: (i) assembly and identification of phage
and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classifica-
tion, (iv) phage-host interaction analysis, and (v) phage microdiversity.

KEYWORDS computational analysis, microdiversity, phage annotation, phage
metagenomics, phage taxonomy, phage and prophage identification, phage-host
interaction, uncultivated viruses, viromes

INTRODUCTION

The use of metagenomics to discover and characterize populations of microbes and
viruses in a particular niche is increasingly common (1). High-throughput sequenc-

ing (HTS) has made it possible to identify new populations of microorganisms without
the need for them to be cultured or dependent on the use of specialized isolation
methods (1). The identification and analysis of viruses in environmental and micro-
biome settings are relevant for multiple fields, most notably human health (2).

With an abundance estimated at 1031 particles, viruses are the most numerous
biological entities in the biosphere (3). Metagenomic analyses have greatly contrib-
uted to the elucidation of the true diversity of viruses: early studies revealed that
while most of the cellular diversity in the biosphere had already been discovered
by the mid-2000s, a good deal of the global virome remained either unknown or
unclassified (4). This is especially true for bacteriophages (phages), viruses that
infect bacteria. As of 2021, there are over 12,000 complete and taxonomically classi-
fied phage genomes deposited in NCBI databases (5); however, single metagenomic
studies can potentially identify up to several thousand new and unclassified phage
genomes (6, 7). Those which cannot be fully classified or annotated remain as
so-called “viral dark matter” (8). Most of these phages cannot be cultured, with
uncultivated viral genomes (UViGs) making up more than 95% of the current diver-
sity in public databases (9), for which we usually ignore the morphology and host,
which are traditionally the most relevant features employed for assigning phage
taxonomy.

Given the differences in viral genomic sequences, both between distinct types of
viruses and between viruses and cellular organisms, viral metagenomics poses multiple
challenges (8). In consequence, a plethora of metagenomic tools and pipelines have
been developed to handle every aspect of these analyses (8, 10), some of them special-
ized for use in phages and some designed for all viral data. This makes it difficult to
keep up with the available offerings and to select a specific tool with adequate param-
eters for a specific set of metagenomic data.

In that context, this review discusses some of the available software for metage-
nomics analysis of phage data, focusing on five topics: (i) assembly and identification
of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxo-
nomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity
(Box 1; Fig. 1). We classified the tools based on the purpose they were designed for,
and we briefly point out the most relevant (in our opinion) factors to consider when
selecting one over the others. Note that while some of the tools mentioned can be
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used for eukaryotic viruses, and even for cellular organisms, we focus on applications
for phage data. We do not aim at recommending any particular tool above others;
instead, we want to make the reader aware of the different advantages and limitations
of the most used, available tools and to outline the main factors to be considered
when selecting a tool to make an informed decision now and as more tools are
developed.

BOX 1: GLOSSARY

� Area under the ROC curve (AUC): Statistical measurement of the performance of
a classifier, based on sensitivity and specificity. Its values range from 0 to 1, with
1 being the best possible. While a value of 0 is considered the worst possible,
any value under 1/N, with N being the number of classes which can be
predicted, is worse than random.

� Command line: Also referred to as a terminal, an interface through which a user
can interact with a computer or server without a graphical interface.
Communication via the command line is done through the typing and
execution of commands from a shell programming language (e.g., Bash).

� E value: number of sequences in a database which would be expected to have,
by chance, an alignment as good as or better than the one obtained given a
query sequence and the selected database. The lower the E value, the more
significant the alignment, and the more likely that the aligned sequences are
homologous.

� F1 score: Statistical measurement of the performance of a classifier, based on
precision and recall. Its values range from 0 to 1, with 1 being the best value
possible and 0 the worst.

� FASTA format: Format for the computational representation of nucleotide or
amino acid sequences. A sequence in FASTA format is composed of (i) one
description line, identified by a leading greater-than (.) sign, which contains
the description of the sequence, and (ii) a sequence line, made up of the
sequence itself without any additional characters.

� General feature format (GFF): Format for the storage of descriptions regarding
biologically relevant features in a nucleotide or amino acid sequence. The GFF
format is tab delimited, with one line per feature.

� Profile hidden Markov models (pHMMs): Mathematical representations of a set
of conserved regions in a given group of sequences. pHMMs are derived from
multiple sequence alignments and are particularly useful for searching for
distantly related sequences.

� k-mer: Sequence of either nucleotides of amino acids of length k. For example,
ATCG is a tetramer, or 4-mer, while LME is an amino acid trimer, or 3-mer.

� Microdiversity: Intrapopulation genetic variation.

� RefSeq: Secondary (i.e., curated) nucleotide and amino acid database managed
by the National Center for Biotechnology Information (NCBI).

� Single nucleotide polymorphism (SNP): A type of mutation in which a single
nucleotide is changed to another.

� t-distributed stochastic neighbor embedding (t-SNE): Statistical method
employed for the graphic visualization of distance data.

� Threshold: In the context of computational biology, a specific value of a
parameter in a tool, pipeline, or method, which is set as the maximum or
minimum value admissible for a result to be called or considered significant.
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ASSEMBLYAND IDENTIFICATIONOFPHAGESANDPROPHAGES INMETAGENOMICDATA

The process of phage community characterization from a metagenomic data set
usually begins with the assembly and identification of phage genomic sequences (11).
These sequences are largely derived from actively infecting phages or from prophages
integrated into the genomes of their bacterial hosts (8). Thus, to thoroughly character-
ize the structure of phage communities from sequenced metagenomes, it is critical to
have the ability to detect phage-derived sequences from either of the aforementioned
sources and differentiate them from other potential contaminants or nonviral nucleic
acids. Achieving an optimal balance between these two properties (recall and preci-
sion, respectively) is critical in order to obtain the most accurate picture of the phage
community structure present within a metagenome (12). During the last two decades,
several phage and prophage detection tools have been developed, and they encom-
pass a wide range of strategies for detecting phages and/or prophages in metage-
nomic data. In general, all these tools take metagenomic assemblies as input data;
thus, the assembly of sequencing reads is a critical step and marks the process where
phage and prophage detection begins.

Assembly and Binning Approaches for Viral Metagenomic Data

Main assembly approaches. The selection of an assembly software for viral metage-
nomic data is critical for an accurate identification of viral contigs and other down-
stream analyses. The efficacy of the 16 most common short-read assemblers, special-
ized in metagenomic data or not, was recently thoroughly reviewed by Sutton et al.

FIG 1 Proposed workflow for the analysis of phage metagenomic data. Raw metagenomic reads are
first filtered for contaminants and then assembled into contigs and binned. While in principle the
identification of phage and/or prophage contigs could be omitted if the researcher knows that the
reads are enriched for viruses, we suggest performing it as an additional way to filter contaminant
nonviral bins. Phage or prophage contigs can then be subjected to genome annotation, taxonomic
classification, microdiversity analysis, and host-association analysis. Moreover, while they are different
analyses, genome annotation and taxonomic classification are usually done conjointly. While one can
carry out microdiversity and/or phage-host analysis without prior annotation and/or taxonomic
classification, the former two are usually done before either of the latter.
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(13) in three distinct data sets composed of both real and artificial viromes. Overall, the
authors recommend the use of MetaSPAdes (14) for virome assembly, which yielded
good results in all the test sets considered, followed by MEGAHIT (15). They also high-
light the presence of repeat sequences, as well as too-high and too-low coverage val-
ues, as the main hindrances to efficient assembly of virome data. In particular, given
that MetaSPAdes performed poorly in the assembly of poorly covered viral genomes,
they suggest that the conjoint use of MetaSPAdes and MIRA (16) might be able to pro-
vide an overall better assembly than either program employed individually.

ViralAssembly (17), developed as part of the MetaviralSPAdes pipeline, is an adapta-
tion of MetaSPAdes for assembly of viral data. It leverages the circular genomic
sequence detection of MetaplasmidSPAdes for detecting circular viral genomes and
allows detection and assembly of terminal repeats in linear genomes. In an analysis of
18 real virome data sets, ViralAssembly was shown to outperform MetaSPAdes in terms
of contig completeness in 12 cases. Furthermore, rnaSPAdes (18), originally designed
for the assembly of transcriptomic data, was recently shown to have the capacity to
generate RNA phage contigs from metagenomic data (19).

One of the most exciting prospects in viral assembly is the development of assem-
bly software for long-read sequencing technologies, which might allow not only
increased viral detection but also more resolution in elucidating the microdiversity of
viral communities (17, 20). While not a specific viral assembler, metaFlye (21), based on
the generation of assembly graphs via high-frequency k-mers, has been shown to
detect and assemble viral genomes in long-read metagenomic data sets with good ef-
ficiency. A specific version for the assembly of viral genomes, viralFlye, is currently in
development (https://github.com/Dmitry-Antipov/viralFlye). The VirION pipeline, now
in its second iteration, VirION2 (22), employs short reads to correct sequencing errors
in long-read assemblies and outperforms hybrid and short-read assemblers when
tested on double-stranded-DNA (dsDNA) viromes. It is important to mention that to
the best of our knowledge, the efficacy of said assembly method has not been tested
yet for RNA or single-stranded-DNA (ssDNA) viruses.

From the final set of the three recommended software programs, MetaviralSPAdes
and metaFlye are available for download from GitHub, where the user can find instruc-
tions on how to install and run them. Both require a basic knowledge of command line
usage for installation, as well as installation of certain dependencies. For the case of
VirION2, the complete protocol, including its experimental steps, is available online
(https://www.protocols.io/view/virion-2-6q9hdz6). Each individual bioinformatic tool
must be installed and run by the user.

Selecting an Assembly Tool

The choice of a specific assembler will mostly depend on the type of reads. For
short reads, we follow the recommendation of Sutton et al. (13), albeit using
MetaviralSPAdes as opposed to MetaSPAdes, which can be combined with MIRA if
low-abundance genomes are present. For long reads, a user with little computational
experience might benefit from using metaFlye or viralFlye, while someone more expe-
rienced might be better off replicating the VirION2 pipeline, provided that sequencing
was done via the adequate technology.

As a final note, it is recommended that the researchers remap all the unassembled
reads, if any, to the contigs generated by their choice of assembly software. This pro-
cess has been shown to improve downstream taxonomic classification (23) and should
also help to reduce the number of unassigned reads prior to binning.

Main binning approaches. A common issue in metagenomic assemblies is the gen-
eration of fragmented or partial assemblies; this is mainly due to variation in coverage or
repeats that will often break the assemblies. Following the assembly, the reconstruction
of microbial genomes from metagenomic data sets relies on the ability to group the
assembled contigs in a way that resembles the genomes they were derived from, a pro-
cess more commonly known as binning. Machine learning techniques are the basis of
some recent virus-specific binning software, aimed at clustering contigs coming from
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the same viral species in a metagenomic sample. For example, CoCoNet (24) employs
tetranucleotide frequencies and read coverage to train a neural network which com-
putes the probability that two fragments come from the same genome and then clusters
contigs into bins based on said probabilities. PHAMB (25), in contrast, uses a random for-
est classifier to discern the viral bins generated via deep variational autoencoders with
VAMB (26). METABAT (27), now in its second iteration, METABAT2 (28), uses as input tet-
ranucleotide frequencies and read coverage information, just like CoCoNet, but derives
distances between contigs from these measurements and uses them directly for the
clustering into bins. Of these three tools, only PHAMB discerns viral from nonviral bins
directly, and it therefore might be preferred for use with metagenome data, while
CoCoNet is specialized for use in highly diverse viromes. METABAT is not specialized in
viromes, but output bins from METABAT can be designated as viral via other phage and
prophage software or the taxonomic classification tools discussed in depth below.

Selecting a Binning Tool

All three software programs need to be installed by the user and require basic com-
mand line knowledge. CoCoNet represents the simplest installation, although the use
of METABAT via Docker is also straightforward. For users with no computational experi-
ence, we recommend the use of CoCoNet. In contrast, for users with basic or higher
command line knowledge, PHAMB might be preferred.

Detection of Phages and Prophages

Main approaches for phage and prophage identification. In general, all currently
available phage and prophage identification tools employ one the following
approaches. Approach 1 is detection of phage proteins through the search of homolo-
gous sequences in phage-specific databases that consist of amino acid sequences or
profile hidden Markov models (HMMs). This search is coupled with the use of sliding
windows to identify regions enriched in phage genes and other phage-associated
properties (e.g., gene coding density, enrichment in hypothetical genes, enrichment in
short genes, and depletion in strand switch). Approach 2 is the use of either supervised
or deep learning prediction models to identify phage contigs, based on the calculation
of sequence features that are independent of database searches. Approach 3 is a
hybrid method that employs machine learning models based on both database
search-dependent and -independent features.

Table 1 provides a summary of some of the phage prediction tools that are currently
publicly available. The initial step to identify bona fide phage proteins in approaches 1
and 3 is based on the analysis of the best hits obtained through BLAST, hmmscan, or
other similarity-based methods. A critical aspect of all those methods is the selected
database, as the breadth of reported matches is influenced not only by the composition
of the database (i.e., which viruses are present and how diverse they are) but also by its
size, since this is known to affect the E value. For example, VirSorter (29), VIRALVERIFY
(17), PHASTER (30), and ProphET (31) use the RefSeq viral database from the NCBI or
selected groups of phages from it, although VirSorter also uses a custom database that
includes phages from a variety of viromes spanning different types of environments (fur-
ther discussed in the following section). On the other hand, Phigaro (32) and VirMiner
(11) perform HMM searches against the prokaryotic Virus Orthologous Groups (pVOGs)
database, which is significantly smaller (33). It is important to note that most of these
tools use similar thresholds. For example, PHASTER (30) and ProphET (31) consider signif-
icant (phage-like matches) hits with an E value of ,1024, while VirSorter uses 1025.
However, in order to provide higher confidence in the viral predictions reported to the
user, these tools consider further virus-associated parameters, such as protein length,
transcription strand directionality, customized AT and GC skew, phage insertion sites,
and the identification of tRNA genes (29–31, 34).

Phage prediction methods that employ machine learning (approaches 2 and 3) cal-
culate a set of features from the input nucleotide sequences, and these are then fed
into a prediction model that determines whether the input sequences are likely to be
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derived from phage genomes. Although those methods seem to be database inde-
pendent, the ability of such prediction models to accurately identify phage sequences
from a metagenomic assembly depends on the training data set, which is often based
on a database such as the ones mentioned above. Furthermore, the training sequence
sets must include genomic sequences from phages and bacteria, as well as other host-
associated sequences such as plasmids (e.g., PPR-Meta, VirSorter2, and Prophage
Hunter) (34–36). There are a variety of sequence features that different phage predic-
tion methods focus on, including k-mer profiles, hits to protein sequence and/or
HMMs databases, gene density, frequency of strand switch, and length of intergenic
regions (36–39). For instance, PhiSpy employs customized AT and GC skew, k-mer in-
formation, strand orientation of transcripts, protein homology, and median protein
length as inputs for its random forest classifier (40). Alternatively, some deep-learning
methods generate prediction models based on different types of representations of
the analyzed sequences. For instance, PPR-Meta uses “one-hot” encoding from the field
of natural language processing to represent sequences as “base one-hot” and “codon
one-hot” matrices (35).

Critical factors that affect the performance of phage and prophage prediction tools.
As mentioned, the composition of the training data set is key to the performance of
the phage prediction method. For instance, VirFinder’s prediction model was trained
using a data set comprising bacterial, archaeal, and phage genomes from NCBI’s
RefSeq database (37). Despite demonstrating great performance in the prediction of
phage contigs from RefSeq genomes and simulated human gut metagenomes, the
reported results revealed that the model’s performance varied depending on the
domain (Bacteria or Archaea) or bacterial phylum targeted by the phages (37).
Furthermore, a performance bias in VirFinder has also been reported in connection
with the type of biome being surveyed, where it demonstrated a lower prediction per-
formance for biomes that are poorly represented among the isolation sources of the
phages in the training data set (41). Nonetheless, users have the option of retraining
the prediction models using custom training data sets that include more phage and
host sequences of interest (e.g., particular host taxa or specific biomes). For instance,
the use of training sets that represented the bacterial and phage diversity in marine

TABLE 1 Comparison of the different tools presented for identification of phage and prophage sequences

Tool Typea Input data type Accessibility Last update
VirSorter (29) 1 Viral or phage genomes or contigs; host genomes

for prophage prediction (FASTA files)
Web-based (https://cyverse.org/)
and stand-alone versions

Last release Oct 2019

VirSorter2 (36) 3 Viral or phage genomes or contigs; host genomes
for prophage prediction (FASTA files)

Web-based (https://cyverse.org/)
and stand-alone versions

Last update Apr 2021

VirFinder (37) 2 Viral or phage genomes or contigs Stand-alone version Last update Sept 2019
DeepVirFinder (42) 2 Viral or phage genomes or contigs Stand-alone version Last update Nov 2020
MARVEL (39) 3 Viral or phage genomes or contigs and raw reads Stand-alone version Last update Apr 2019
PPR-Meta (35) 2 Phage and plasmid fragments from metagenomic

assemblies
Stand-alone version Last update Jan 2020

VIBRANT (38) 3 Sequence derived frommetagenomic assemblies Web-based (https://cyverse.org/)
and stand-alone versions

Last update May 2020

VirMiner (11) 3 Processed raw reads Stand-alone version Last update May 2020
Prophage
Hunter (34)

3 Viral or phage genomes or contigs; host genomes
for prophage prediction (FASTA files)

Web based (https://pro-hunter
.genomics.cn/)

Last update Apr 2019

PhiSpy (40) 2 Viral or phage genomes or contigs Stand-alone version Last update May 2021
VIRALVERIFY (17) 3 Raw reads, phage or plasmid fragments from

metagenomic assemblies
Stand-alone version Last update 2020

ProphET (31) 1 Bacterial genome sequences Stand-alone and web based
(https://cpt.tamu.edu/galaxy
-pub)

Self-updates or by
the user

PHASTER (30) 1 Viral or phage genomes or contigs; host genomes
for prophage prediction (FASTA files)

Web based (http://phaster.ca/) Last update Dec 2020

Phigaro (32) 1 Metagenomic assemblies or raw genomes or
contigs; host genomes for prophage prediction

Stand-alone version Last update Aug 2020

aCorresponds to the approaches described in “Main Approaches.”
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ecosystems significantly improved VirFinder’s phage prediction performance (41). That
being said, the second iteration of this tool, DeepVirFinder (42), has been shown to
outperform VirFinder in identification of phage contigs when tested with viral RefSeq
and human gut metagenomes.

In general, the way phage prediction tools perform may depend on whether the
input data come from a total metagenome or a virus-enriched metagenome (virome).
VirSorter, an example of predictors that follow approach 1, identifies phage sequences
by comparing the values of a range of metrics between the sliding windows and a
global value calculated for the complete set of input sequences (29). However, when
the input data set corresponds to a virome, the calculated global values are not appro-
priate for discriminating between host and phage sequences. Thus, VirSorter allows
the user to employ a set of precomputed global metrics to analyze input data sets
enriched in viral sequences, by setting the –virome flag when using the command line
version of the tool or by selecting the “virome decontamination” option if the tool is
accessed via the CyVerse discovery environment (https://cyverse.org/) (29).

Another difference between the analyses of total metagenomes and viromes is the
presence of contaminant cellular nucleic acids. Despite the viral purification process that
precedes the generation of a virome, several studies have reported that the presence of
contaminating bacterial sequences is rather common (43). Thus, such sequences should
always be considered during the analysis of data sets derived from viral-enriched samples.
Nevertheless, the abundance of contaminating sequences is generally higher in total
metagenomes, and these must be correctly handled in order to minimize the number of
unwanted sequences as input for the assembly, as these render the data analysis more
complex and computationally expensive. Furthermore, the presence of contaminating
sequences from eukaryotic organisms (host associated or members of the studied micro-
biome) can affect the performance of some phage prediction tools. For instance, it was
recently reported that VirFinder’s phage prediction model shows higher false-positive rates
when the analyzed data sets contain sequences from eukaryotic organisms (43).

Selecting a Phage/Prophage Prediction Tool

One of the factors that the user should consider when choosing a tool is the level
of computational expertise needed to perform the analysis. For users who are not
experienced in the use of the command line, we recommend tools that are accessible
via web browsers (e.g., PHASTER and Prophage Hunter). There are other tools that are
available both as stand-alone versions for use on the command line and as web-based
services hosted at genomics data analysis servers such as CPT Phage Galaxy (https://
cpt.tamu.edu/galaxy-pub) and the CyVerse discovery environment (https://cyverse
.org/). These include tools that are popular among the scientific community, such as
VirSorter, VirSorter2, and VIBRANT, and the aforementioned data analysis servers offer
user-friendly graphical interfaces that enable users who are not proficient at using the
command line. However, for advanced users with more experience using the com-
mand line, we recommend the use of stand-alone tools, as these provide more flexibil-
ity by allowing the user to use custom reference databases and training data sets.
Furthermore, advanced users may also combine different stand-alone tools into cus-
tom pipelines that produce a unified output based on the predictions reported by
each tool. In fact, a publicly available pipeline named “What the Phage” can be down-
loaded from GitHub (https://github.com/replikation/What_the_Phage), and it allows
users to apply a comprehensive set of phage prediction tools to their own metage-
nomic contigs and compare the output obtained from each one of them, which helps
users to identify contigs that are reported by more than one tool and guide their selec-
tion of putative phage sequences (44). The use of stand-alone tools requires the user’s
capability to work on the command line in order to install and run these programs.
Table 1 provides further details of some of the more commonly used tools for the iden-
tification of phages and prophages in metagenomic data sets.

Another important factor to consider during the selection of prediction tools is the
extent of phage diversity that the user is interested in studying. For instance, an
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appropriate selection depends on whether the user is interested in analyzing only
dsDNA phages or all phages regardless of their type of nucleic acid. Despite the mas-
sive increase in phage genomes that have been deposited in public databases during
the last few years, there is a persistent bias toward genomes from dsDNA phages (45).
In addition, most tools available to date use prediction models based on a specific set
of features that represent all phage sequences, without considering the differences
that could exist between different groups of phages. VirSorter2 stands out in this
regard, as it is currently the only phage prediction tool that includes different predic-
tion models for dsDNA, ssDNA, and RNA phages (36).

In addition to the type of nucleic acid, users may have an interest in particular groups
of phages for which prediction tools have been developed. For instance, MG-Digger (46),
Giant Virus Finder (47), and FastViromeExplorer (48) can identify nucleocytoplasmic large
DNA virus (NCLDV) sequences in metagenomic data using nucleotide-level homology
searches. However, it has been reported that average amino acid identity (AAI) between
NCLDVs from different families can be as low as ;20%. In consequence, ViralRecall (49)
implements HMM searches from a database of 28,696 giant virus orthologous groups.

Assessing the completeness and contamination of predicted phage contigs. Following
the prediction of phage contigs, the applied analysis pipeline might include a step that
checks their quality in relation to genome completeness and host sequence contami-
nation. VIBRANT, a phage predictor based on approach 3, includes a step in its algo-
rithm that estimates genome completeness via the identification of terminal repeats
(for circular genomes) and the presence of replication and viral hallmark proteins,
detected though the search of the VOG database (http://vogdb.org/) (38). In addition,
viralComplete determines the level of genome completeness by computing the simi-
larity of the input phage contigs to each phage genome available at RefSeq and esti-
mates whether the most similar RefSeq phage has a length similar to that of the input
phage contig (17). However, the most popular and sophisticated tool developed to
date for estimating genome completeness and host contamination of phage contigs is
CheckV.

CheckV estimates host contamination in phage contigs through a method that
combines gene annotation using a carefully curated HMM database of microbial and
viral genes, and the detection of microbial or viral gene enriched regions using sliding
windows (50). In addition, CheckV estimates the genome completeness of phage con-
tigs through the identification of closely related phages in reference databases by
means of the average amino acid identity (AAI) (50). Once a closely related phage is
identified, the genome completeness of the input phage contig is estimated as the ra-
tio of its length to that of the selected reference phage, and a confidence value is pro-
vided along with the genome completeness estimate (50). For cases in which the confi-
dence value is low (i.e., when a sufficiently close reference phage is not identified for
the input phage contig), CheckV estimates genome completeness using reference
genomes that are annotated by the same set of viral HMMs as the input phage contig.
Thus, in these cases CheckV provides a range of genome completeness values that cor-
respond to the 5th and 95th percentiles from the distribution of reference genome
lengths (50). Benchmarking of CheckV demonstrated enhanced performance in com-
parison with VIBRANT and viralComplete, and the output categories it employs are
suitable for submitting phage genomic sequences to public databases, according to
the Minimum Information about an Uncultivated Virus Genome standard (8, 50).

Contribution of phage and prophage prediction tools to the expansion of the
known global phage diversity. The development of these prediction tools has
greatly impacted the pace at which novel phage genome sequences are being discov-
ered (45). For example, recent studies have explored the genomic characteristics of
prophages (such as host range) in thousands of prokaryotic genomes (51). In these
studies, the authors explored the prophage population using VirSorter alone or in com-
bination with other tools, such as VIRALVERIFY. Moreover, the prophage prediction in
large data sets is made in a rapid and easy way, allowing the analysis of other
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interesting aspects of prophages, for example, the identification of genes associated
with virulence or antibiotic resistance (51).

In 2019, a study reported the viral exploration of the world’s oceans through the
analysis of a large collection of marine samples derived from the Global Ocean
Viromes (GOV) 2.0 and Tara Oceans Polar Circle expeditions (52). The protocol for viral
discovery applied in this study combined approaches 1 and 2 using VirSorter and
VirFinder, respectively. This viral prediction protocol allowed the identification of 12
times more viral operational taxonomic units (OTUs) ($10 kb in length) than the analy-
sis conducted with data from the GOV 1.0 expedition. In addition, the applied protocol
enhanced the identification of short viral contigs, ,10 kb, which resulted in an addi-
tional 292,402 viral OTUs that had not been detected in GOV 1.0 (52). A similar phage
prediction protocol was applied to contigs assembled from 28,060 gut metagenomic
data sets, which resulted in the identification of 142,809 nonredundant phage sequen-
ces that were collectively referred to as the Gut Phage Database (GPD) (53). After clus-
tering the GPD with phage sequences from other sources using a threshold of 90% nu-
cleotide sequence identity over a 75% aligned fraction, the authors revealed that less
than 1% of the resulting clusters contained entries from the GPD and NCBI’s RefSeq
database (53). Furthermore, after comparing GPD to the human Gut Virome Database
(GVD) (54) and gut phages from IMG/VR (45), the authors demonstrated that GPD
included the largest number of unique viral clusters, and thus, it significantly expanded
the known diversity of human gut phages (53).

GENOME ANNOTATION OF PHAGES

Given the huge genomic diversity of phages, predicting the genes and functions
encoded in their genomes is a key step that might provide better insight into their individ-
ual roles in their communities. While some viral genes are abundantly shared by a large
proportion of the currently known viruses, many of their sequences have not been charac-
terized yet. As an example, in the most recent iteration of the prokaryotic viral orthologous
groups (pVOGs, formerly POGs), it was estimated that on average a third of the proteins in
a dsDNA phage genome do not fall within any orthologous group in this database (33),
suggesting that they have a novel function or belong to genes not commonly found in
phages, likely being moved from the host. Furthermore, analyses of both human gut and
environmental phage genomes indicate that around 75% of the sequences encoded by
the phage genomes cannot be assigned to any biological function, suggesting that the
functional novelty of phage sequences is even higher (7, 55). Additionally, phages tend to
have a mosaic genome composition, with different genes having different evolutionary
histories due to events of horizontal gene transfer (56), leading to further difficulties in the
prediction process and selection of adequate reference databases to train the predictors.
In order to characterize the functional diversity of phage genomes, two processes have to
be carried out: (i) gene calling, or identifying the genes and their coordinates within the
genome, and (ii) the functional annotation of those genes. Each of those processes entails
different challenges and is worth exploring independently.

Gene Calling

The process of genome annotation begins with the identification of the genes pres-
ent in a given phage. The most commonly and successfully applied tools to predict
open reading frames (ORFs) in phages are Prodigal (57), Glimmer (58), and GeneMarkS
(59, 60), even though they were initially developed for predictions in prokaryotes.
Further improvement in gene calling accuracy has been observed when the above-
mentioned tools are combined; thus, robust packages dedicated to a comprehensive
genome annotation of microbial genomes, such as Rast-tk (61) (now part of PATRIC
[62]) and Prokka (63), allow such tasks. Nevertheless, predicting ORFs in phages has its
own challenges compared to prediction of ORFs in prokaryotes, and some genes might
be missed by these tools and packages.

Overlapping genes, the presence of introns/inteins in phage genes, and alternative
coding of phages add an extra layer to the complexity of gene calling. As the tools
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mentioned above do not automatically recognize these phenomena, the researcher
must realize that the annotations may be incomplete or truncated. Here are some
options that have recently emerged on how the community has approached each of
these cases.

Overlapping genes. In phages, as in the entire viral spectrum, instances of gene over-
lap are prevalent (64, 65). Therefore, the nonmodularized genomic architecture of phages
hinders gene prediction. To deal with that, McNair et al. developed PHANOTATE (66), a
gene calling method specifically designed for phage genomes that outcompetes the other
predictors in the number of predicted genes. Although some of the predictions might be
false positives, given the high number of unknowns when working with phages, it might
be preferable to initially have a relaxed tolerance for false positives.

Presence of inteins/introns. Many phages, such as T4 phages (67), members of the
family Herelleviridae (68), and crAss-like phages (69), include group I or group II self-
splicing introns/inteins. These selfish genetic elements in coding sequences cause frag-
mented gene calls and affect downstream steps such as functional annotation and
phylogenetic analyses. Recently, Shapiro and Putoni developed Rephine, a pipeline for
correcting gene calls (70). Briefly, given the pangenome of a related set of phages,
Rephine evaluates two metrics, relbit (relative similarity of the gene fragments com-
pared to the rest of the sequences in the cluster) and percoverlap (the overlap percent-
age between the gene fragments). Although the pipeline provides default values for
these metrics, it also produces a table with the values obtained for each potential gene
fragment. Therefore, it could be fruitful to explore and adjust the thresholds on a case-
by-case basis, as the defaults are only suggested values based on the test cases exam-
ined by the authors.

Alternative genetic codes. Recently, the common use of alternative genetic codes
in megaphages (71, 72) and crAss-like phages was reported (72). In these cases, regular
gene calling results in fragmented ORFs and low coding density. To evaluate nucleic
acid sequences for their genetic code, Dutilh and collaborators developed the tool
FACIL (73). FACIL automates the detection of noncanonical codes; nevertheless, a man-
ual inspection of the alignment of the codons on the DNA against homologous protein
sequences is always a good idea. In cases where the use of an alternative genetic code
is confirmed, the gene calling can be repeated using Prodigal, which supports all
genetic codes defined by NCBI.

As for the vast majority of organisms, the researcher must be aware that automated
gene calling on phages is not perfect; nevertheless, manual curation suffers from high
labor cost, lack of standardization, and a degree of subjectivity in decision-making (74).
Therefore, here are some final recommendations to reduce false positives and false nega-
tives during gene calling. (i) All the above-mentioned “common ORF predictors” have a
high degree of agreement. Use them in combination, selecting genes predicted by at least
two tools (75, 76) and prioritizing Prodigal over Glimmer to assign start and end coordi-
nates (74, 75). (ii) As mentioned, it is common to end up with truncated annotations and
false negatives after the first round of gene calling. We encourage others to deal with the
three possible causes addressed here, taking advantage of the mentioned tools to solve
the problem in a semiautomated and case-based manner. (iii) Last, manually checking
new findings reduces the number of false positives and allows the researcher to gain infor-
mation on unique genomic features of the analyzed phages.

Annotation Approaches

After gene calling, different strategies for the functional annotation of ORFs can be
applied depending on the genome or genomes in question. For common phages or
phages with close homologues in public databases, query searches against sequence
databases (Table 2) using BLAST (76) or DIAMOND (77) might be sufficient. Nevertheless,
given the mosaicism and the high mutation rate of phages, often no significant results
are obtained after a sequence similarity search. In this case, it is advisable to use meth-
ods for detection of remote homologs based on hidden Markov models (HMMs), which
leverage the use of sequence profiles and the information about conservation for each
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residue. Programs from HMMER (http://hmmer.org/) or HH-suite (78) are commonly
employed for this approach. Therefore, using them can be as easy as running BLAST ei-
ther in the command line or in their online servers (HMMER, https://www.ebi.ac.uk/
Tools/hmmer/; HH-suite, https://toolkit.tuebingen.mpg.de/tools/hhpred).

Multiple profile HMM databases can be used conjointly with HMMER or HH-suite
(Table 2). Among them, we highlight pVOGs (33), viralOGs (now part of EggNOG) (79),
ViPhOGs (80), and PHROGs (81), as they provide profiles of clusters of orthologous
groups that are specific for phages and/or eukaryotic viruses. In all four cases, the raw
protein alignments and the HMM profiles are provided so they can be used either with
HMMER or HH-suite. Although not all profiles offered have a functional annotation, the
identification of significant hits against those models implies identification of genes
that are present and conserved in other viral genomes. Furthermore, these profile
HMM databases can be used also to explore the evolutionary history of viruses and
their proteins. For example, Low et al. employed pVOGs to build a concatenated protein
phylogeny of dsDNA phages (82), and Andrade-Martínez et al. used the set of ViPhOGs used
to elucidate potential relationships between Herpesvirales and Caudovirales and define the
core genome of the former (83). Finally, although the use of profile HMMs is highly recom-
mended for remote homolog searches, we recommend that users check their search results,
since not all profiles have the same precision/sensitivity, and the same thresholds (E values)
should not be applied for all profiles/genes.

Modular pipelines like Multiphate2 (84), RASTtk (61), and VIGA (85) allow coupling of
gene calling and functional annotation in a high-throughput way using the command
line. Furthermore, their modular construction approach permits the user to decide which
parts to use. Multiphate2 can tackle previously mentioned phage-related annotation chal-
lenges, since it was designed to annotate and compare phage genomes. First, it integrates
several gene callers, and second, it incorporates a variety of search algorithms and data-
bases to increase the success rate of functional annotation.

TABLE 2 Description of protein databases used for functional annotation of predicted ORFs

Database Description Typea

Viral RefSeq (149) Curated NCBI database of viral genomes, genes, and proteins. Blast search is available
online. Periodically updated.

Sequences

UniProtKB (150) Curated collection of proteins and proteomes from all domains of life, derived from
either direct submissions or predictions from either the European Nucleotide
Archive (ENA), GenBank and the DNA Data bank of Japan (DDBJ). BLAST search is
available online. Periodically updated.

Sequences

Pfam (151) Database of protein families of all domains of life, derived from curated UniProtKB
entries. Periodically updated.

MSA and HMM

viral eggNOG (79) Clusters of orthologous viral proteins derived from graph-based unsupervised
clustering. Last updated in 2016.

HMM

ViPhOGs (80) Database of clusters of orthologous viral and phage protein domains generated
through the CogSoft algorithm. Last updated in 2021.

HMM and MSA

pVOGs (33) Phage gene families derived from orthologous clustering of phage proteins from
complete phage genomes. Last updated in 2016.

HMM and MSA

NCBI_CD (152) Collection of conserved bacterial domains, compiled from six different databases.
Web search is available (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
Last updated in 2020.

HMM and PSSM

SCOP (153, 154) Database of structurally and evolutionary conserved proteins, organized in a
hierarchical classification of families and superfamilies. Conserved domains based
on different degrees of sequence identity are also available. Last updated in 2021.

Sequences

VOGdb (http://vogdb.org) Database of clusters of orthologous viral proteins, derived from the combined use of
the CogSoft algorithm and HH-suite on RefSeq phage and prophage genomes. The
database provides both virus specific proteins (for detection of viral sequences in
metagenomes), and panels of essential viral proteins. Periodically updated.

HMM and sequences

VPFs (155) Database derived from the Earth Virome analysis of Paez-Espino et al. (7), consisting of
groups of viral orthologous proteins. Last updated in 2016.

HMMs

PHROGs (81) Remote homologous groups from proteins of complete genomes of viruses infecting
bacteria or archaea. Last updated in 2021.

HMM and MSA

aMSA, multiple sequence alignment; PSSM, position specific scoring matrix.
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Beyond the identification of genes and their functions, annotating a phage genome
encompasses the annotation of RNAs, tandem repeats, and diversity-generating retro-
elements, among others. For example, RASTtk allows the annotation of RNAs and
repeat regions. Although it was conceived to annotate bacterial and archaeal
genomes, RASTtk has been a handy tool for phage annotation in the past (86).
Moreover, while VIGA relies only on Prodigal for gene calling, its strength is that it
includes several modules or routines to comprehensively annotate a viral genome. In
addition to gene calling and functional annotation, VIGA allows detection of the contig
shape (linear or circular) with LASTZ (87), prediction of ribosomal genes with INFERNAL
(88), and prediction of tRNA and tmRNA sequences with ARAGORN (89) and runs
PILER-CR (90), Tandem Repeats Finder (TRF) (91), and Inverted Repeats Finder (IRF) (92).

Machine learning-based annotation approaches. As mentioned before, most
phage-borne genes have no close homologs in reference databases and their func-
tional annotation is usually lacking. To solve this, several groups have used deep neural
networks to recognize phage virion proteins, mainly because these can be considered
a hallmark of phages and play an important role in phage-host interaction.
DeepCapTail (93) classifies an ORF as capsid or tail; VirionFinder makes a binary classifi-
cation of phage virion protein or not (94); DeephageTP focuses on Portal, TerL, and
TerS proteins (95); and PhANNs classifies the proteins in 10 different classes of struc-
tural proteins (96). Ultimately, specific research and data requirements will lead to the
selection of a specific classifier among those mentioned.

Selecting Gene Calling and Genome Annotation Tools

In general, we recommend the use of the mentioned modular pipelines, as they allow
coupling of gene calling and functional annotation, the use of different programs, and the
selection of the modules of interest. While all the pipelines require a basic knowledge of
the command line, their installation is facilitated by the use of package managers;
Multiphate2 relies on conda, VIGA relies on Docker, and RASTtk is now part of PATRIC
(https://www.patricbrc.org/). In particular, for the overall selection of specific gene calling
software, we suggest the use of a combination of approaches. The conjoined use of
PRODIGAL, GLIMMER, and GeneMarkS provides a good overview of the main gene content
of most phage genomes. Among these gene calling programs, only GeneMarkS offers a
web server (http://opal.biology.gatech.edu/GeneMark/). Regarding the functional annota-
tion, DIAMOND or BLAST can be used to search for homologs, and HMMER or HH-suite for
remote homologs. All of them, except for DIAMOND, offer an online server to submit the
sequences of interest.

Regarding the selection of a public database for genome annotation, we suggest
the use of databases that are periodically updated and the application of both BLAST/
DIAMOND and HMMs for annotation. This not only provides a higher confidence in the
predicted functions of each sequence but also leverages the strengths of both
approaches. In the case of BLAST/DIAMOND, the use of NCBI RefSeq is ideal in terms of
both simplicity of running the process and number of viral sequences considered. The
choice of an HMM database, in contrast, should be made based on the specific needs
of the user, with PFAM being the most general option available, although the combi-
nation of multiple databases might yield the most useful results. In case no annotation
is obtained via this combined approach, the use of machine learning-based tools
might provide insights into the function of some of the unannotated phage ORFs.

TAXONOMIC CLASSIFICATION

The process of taxonomic classification of viral metagenomic samples is more chal-
lenging than that of cellular organisms. The shared common ancestry of the latter
allows the existence of universal marker genes, most notably 16S and 18S rRNA genes,
which can provide a reasonable representation of their evolutionary origin and diver-
gence (1, 97). In contrast, this approach is not fully applicable to viruses, since they lack
any equivalent set of universally conserved genes on which to construct a phylogeny
(98, 99).
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Viral classification is limited by two factors. First, current viral genome databases do
not reflect the actual diversity of these elements in the biosphere (6). Second, viral tax-
onomy, as defined by the International Committee on Taxonomy of Viruses (ICTV), is
currently in a state of flux (100), with changes being made and/or proposed to, among
others, the number of taxonomic ranks to consider (101), the criteria for defining each
specific rank (6), and the validity of traditional viral clades, not based on molecular cri-
teria (102). However, several tools to classify viruses assembled from metagenomes
have emerged in recent years (103), most of them based on sequence similarity by
using either BLAST or HMMs. In this section, we briefly present some tools for classify-
ing viruses from metagenomic data. Table 3 compares the main characteristics of these
approaches. Other methods not mentioned here can be found in a recent comprehen-
sive review by Nooij et al. (10).

BLAST-Based Approaches

Some of the tools developed for taxonomic assignment are based on the use of
BLAST. For example, VIRIDIC (104) aligns all genomes (or contigs, for that matter) in a
user-provided data set via BLASTn and then proceeds to utilize a hierarchical cluster-
ing algorithm to group the viral genomes based on their alignment similarities. In a
similar manner, VICTOR, based on the application of Genome BLAST Distance Phylogeny
(105), derives intergenomic distances from pairwise comparisons of nucleotide or amino
acid sequences from complete or partial viral genomes. It is important to note that both
VICTOR and VIRIDIC find similarities between the genomes or contigs which are intro-
duced as input, either clustering them or constructing a phylogeny, but do not compare
them to any database or set of genomes with known taxonomy. In other words, they do
not directly classify phage genomes into specific clades. In order to use them for classifi-
cation, the user must add reference viral genomes, with known taxonomy, to the input
and use their similarity to the original input genomes to determine their classification.
For VIRIDIC, the working similarity thresholds available in the tool only allow the genera-
tion of putative species or genus clusters, according to recent definitions by ICTV.
Another option is to perform an extra analysis to determine the clades associated with
each cluster of genomes via identification of shared gene orthologous groups represen-
tative of specific viral clades. Both tools are restricted in the maximum number of
sequences to use: 100 for VICTOR and 300 for VIRIDIC.

tBLASTx is used by VipTree (106), a software tool designed for quick taxonomic clas-
sification of new viral genomes. VipTree determines pairwise similarities of putative
proteomic sequences of a query genome against reference viral genomes included in

TABLE 3 Comparison of the tools for taxonomic classification of phage metagenomic data

Tool Approach Accessibility Recently updateda

VIRIDIC (104) BLAST followed by hierarchical clustering Stand-alone version Yes
VICTOR (105) Blast-derived intergenomic distances Online web service No
VipTree (106) tBLASTx Online web service Yes
Dougan and Quake method (107) tBLASTx and 4-mer distances Needs to be implemented by user NA
VPF-Class (108) HMMs against different databases Stand-alone version Yes
GRAViTy (110, 111) Presence/absence and synteny of

orthologous groups determined via
HMMs

Stand-alone version Yes

VIRify (https://GitHub.com/EBI
-Metagenomics/emg-viral
-pipeline)

HMMs from ViPhOGs Online web service Yes

Classiphage (97) HMMs refined by BLASTp HMM database available for
download, distances must be self
implemented

Yes

vConTACT (110) Distances derived from Markov-based
phage protein clusters

Stand-alone version Yes

a“Yes” indicates that the tool or database has been updated or created in the past 2 years. NA, not applicable.
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the tool and generates a phylogenetic tree based on said similarities. The software is
limited to constructing trees with at most 200 query sequences.

The usefulness of these three tools is limited by the degree of completeness of the
query viral contigs, the prior knowledge the author might have regarding their taxon-
omy, and the database employed. VICTOR, given its use of nucleotide distances, is bet-
ter suited for determining close evolutionary relationships, while VIRIDIC and VipTree,
given their ability to use proteomic information, are better for more divergent ones. In
the extreme case where little or nothing is known of the taxonomy of the queried
viruses, the use of reference sequences automatically provided by VipTree would be
preferred to the manual input of reference sequences from VICTOR or VIRIDIC.

In fact, tBLASTx has been shown to be able generate large-scale viral clusterings when
combined with k-mer information: Dougan and Quake (107) employed a combination of
tBLASTx and 4-mers to derive an entropy-based genomic distance for classifying a set of
5,817 viral genomes. These distances are then converted into a multidimensional represen-
tation through t-distributed stochastic neighbor embedding (t-SNE) and clustered to pro-
duce a distance dendrogram. Albeit done with complete viral genomes, this method could
be adapted for metagenomic data sets by an experienced user and is known to work with
a large set of viral genomes, compared to the three aforementioned tools.

Markov-Based Approaches

Other approaches use HMMs and/or Markov clustering (MCL) for classification (ei-
ther conjointly with or without BLAST). For example, VPF-Class (108) runs an HMM
search against three different data sets: the NCBI viral sequences, the prophages data
set from Roux et al. (29), and the Global Ocean Virome (109) to determine viral classifi-
cation and host prediction.

In contrast, GRAViTy (110, 111) derives protein profile HMMs from BLASTp-based
orthologous protein clusters. These models are then used to scan complete viral genomes
to derive information of their gene content and orientation (i.e., synteny), from which pair-
wise distances are computed. GRAViTy has been applied for classification of both com-
plete eukaryotic (110) and prokaryotic (111) viruses. As mentioned in the section above,
the use of presence/absence information of ViPhOGs (formerly VDOGs) in a given set of vi-
ral genomes, obtained via scanning of genomic proteins against ViPhOG HMMs, can be
used both to infer phylogenies among viruses and to determine representative ortholo-
gous proteins of specific viral taxa, allowing the potential classification of viral sequences
from metagenomic samples (80, 83). VIRify (https://github.com/EBI-Metagenomics/emg
-viral-pipeline), currently in development, employs ViPhOG presence/absence information
for the classification of metagenomic viral contigs.

Another tool, Classiphage, leverages a combined approach: HMMs are constructed
from the proteomes of a set of genomes, clustered based on Markov chain clustering.
BLASTp is then employed to refine the clusters, with the objective of finding unique
HMMs for each cluster of interest (97). However, this tool has been tested in only a
very specific set of phage genomes, namely, vibriophages (i.e., phages which infect
bacteria from the genus Vibrio).

Finally, vConTACT, currently in its second version (110), constructs phage protein
clusters via Markov clustering and generates pairwise similarities between genomes.
These similarities can then be represented as a gene-sharing network from which ge-
nome clusters can be derived. However, the user needs to use reference viruses to
assign the taxonomy.

Either VIRify or VPF-Class would be preferably used for classification of phage con-
tigs when no taxonomic background is known. GRAViTy, while leveraging both HMMs
and synteny, can achieve reliable classification only up the family level (albeit with
high accuracy), and its use is not recommended for incomplete (or putatively incom-
plete) genomes. vConTACT, on the other hand, would be advisable for looking into ev-
olutionary relations between large sets of phages with different degrees of evolution-
ary distances, where some information is known about the taxonomy of the genomes,
such that adequate reference sequences can be included in the analysis.
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Selecting a Taxonomic Classification Tool

A critical aspect to consider when selecting a tool to use is the computational ex-
pertise and software support. VICTOR, GRAViTY, and VipTree are available as online
web services, such that the user needs no command line experience to run them. On
the other hand, GRAViTy, VIRIDIC, VPF-Class, VIRify, and vConTACT offer stand-alone
versions which can be included in custom pipelines to analyze large data sets derived
from metagenomic data.

The installation and running of the programs vary in accessibility: VIRIDIC is very
straightforward to install and run. GRAViTy, VPF-Class, and vConTACT are based on
Python and therefore might require basic knowledge of both Python programming
language and command line usage. Notably, vConTACT provides multiple installation
options, all of them explained by the authors, although it requires the installation of
dependencies prior to its usage. VPF-Class needs to be compiled by the user before
running it. VIRify is installed via Nextflow and either Docker or Singularity.

All of these software programs provide documentation for download, installation,
and use, and most are available in GitHub, where some support may be obtained from
the developers. Of these approaches, VPF-Class, VIRify, VIRIDIC, GRAViTy, and vConTACT
have been updated (or created, for that matter) in the past 2 years.

The procedure described by Dougan and Quake (107) is not available in any sort of
software or source, so the user must replicate their workflow as described in the paper.
A similar process must be followed for Classiphage, where the user must download the
associated vibrophage HMMs and follow the methods described by the authors.

Overall, we suggest the combination of one Markov-based and one BLAST based
procedure, to have complementary data for classification. For users without computa-
tional experience, GRAViTY and VipTree, both with web services, would be the easiest
combination to run. Users with a basic knowledge of the command line interface
might prefer a combination of VipTree and VPF-Class, or even VipTree and VIRify. For
highly experienced users, especially with large data sets, the prior analyses could be
complemented with the use of vConTACT, to obtain a large-scale picture of the taxo-
nomic composition and relations of the phages in the metagenome.

PHAGE-HOST INTERACTIONS

Since next-generation sequencing (NGS) technologies are culture independent, viral
sequences identified from these methods lack an association with their host (111).
While many experimental methods have been developed to link a phage with its bac-
terial host, these methods are not always applicable, and they are often biased toward
culturable hosts, as they require the purification of the host, phage, or both (111).
Consequently, there is an urgent need for computational tools which predict phage-
host interactions.

Tools for detecting phage-host interactions are helping microbial ecologists seeking
to solve questions related to phage biology and their interaction with other members
of microbial communities. Additionally, they give clues to the potential host of a newly
discovered virus, or the potential viruses to which an unidentified bacterium is suscep-
tible (111–113). Moreover, these tools may be a source of new knowledge, as they can
predict potential interactions that have not been described before. However, it is im-
portant to be careful and select the analysis that best suits specific research questions
in regard to the balance of false-positive and false-negative interactions and which is
prioritized.

Main Approaches

A recent increase in sequence-based tools aimed at identifying which bacteria act
as the hosts of a given phage in a metagenomic sample has been observed (112, 114–
119). Some of these tools use prediction signals from phage-host interactions that can
be categorized as (i) homology dependent, such as nucleotide similarity BLAST scores
and CRISPR spacer matches (111), as in SpacePHARER (119), CrisprOpenDB (120) and
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CRISPRDetect1BLAST (121), or (ii) independent signals, such as similarity/dissimilarity
measures, oligonucleotide (k-mer) usage profiles, and protein-protein and domain-do-
main interaction scores, as in VirHostMatcher (112), RaFAH (113), WIsH (114) and
HostPhinder (115). Other tools, such as Host Taxon Predictor (HTP) (116), ILMF-VH (117)
and VirHostMatcher-Net (118), also include features obtained from the genomic
sequence itself, like the length and molecule type (ssDNA, dsDNA, ssRNA, etc.), or even
features derived from virus-virus and host-host similarity, assuming that similar phages
may infect the same host, and that genetically similar hosts are susceptible to the
same type of phage (Table 4).

In a similar manner to homology-search based tools looking for prophages in bacte-
rial genomes, phage host predictions generated by CRISPR-based homology-dependent
tools, such as SpacePHARER, the CrisprOpenDB pipeline, and CRISPRDetect1BLAST, tend
to be highly specific, producing a low rate of false positives, but not very sensitive, gen-
erating a high number of false negatives (Table 4). The presence of CRISPR spacers
reflects past phage infections, which are signals of phage-host interactions. However,
CRISPR spacer content within bacterial genomes is dynamic, meaning the same set of
spacers is not necessarily conserved over time or among different strains (122).
Moreover, not all bacteria use CRISPR spacers to overcome phage infection: as of 2021,
only 63.3% of the bacterial genomes available at NCBI databases have CRISPR spacers
(120). Therefore, considering database biases and CRISPR spacer dynamics by them-
selves, there are still a number of interactions that cannot be identified by this method.

In general, homology-independent tools use as their input full genomic sequences
or assembled contigs from the phage, the bacterial host, or both, to feed a previously
trained machine learning model which predicts phage-host associations in a taxonomi-
cally independent manner (112, 114–117, 123). Conversely, tools such as vHULK (124)
and HostPhinder, which use their own databases to make predictions, might bias the
results toward the taxa included in said databases. Altogether, these software tools
have moderate to high predictive ability for all taxonomic levels, from domain to spe-
cies, with the lowest performances being obtained for the lowest taxonomic levels (i.e.,
genus and species).

Table 4 summarizes the main tools for prediction of phage-host interactions and
shows the performance obtained for each tool, although caution should be taken in
interpreting those numbers, as they are derived from different benchmark data sets
and for different taxonomic levels. It is important to highlight that some tools do not
report performance metrics other than accuracy, which skews the perception of how
well the model works. Usually, phage-host interaction data sets are imbalanced toward
negative interactions (i.e., when there is no evidence that a phage is able to infect a
given bacterium), meaning that there is a higher number of negative interactions than
positive ones. Thus, if the model predicts that every interaction is negative, the accu-
racy will display a high value, causing the user to think the model is good. Therefore, it
is better to rely on other metrics, such as F1 score and the area under the receiver
operating characteristic curve (AUC) of precision recall and/or sensitivity versus speci-
ficity curves (125), which do not consider true negatives as part of their calculation.

Tools such as RaFAH, ILMF-VH, PHISDetector (123), and HTP, based on machine
learning techniques such as random forest, logistic regression, support vector
machines, etc., show better performance than those that are directly metric based, for
example, those that predict the host as the one with the highest similarity or lowest
dissimilarity value, such as VirHostMatcher and HostPhinder, or those that are homol-
ogy dependent, such as those based on BLAST or CRISPR matches (119–121).
Additionally, vHULK and VirHostMatcher-Net, which include network-based models,
such as k-nearest neighbors, may be negatively affected when the query is distant
from known viruses.

Selecting a Host Prediction Tool

Most of these tools (i.e., SpacePHARER, CrisprOpenDB, WIsH, Host Taxon Predictor,
ILMF-VH, and VirHostMatcher-Net) are available from GitHub repositories and have
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TABLE 4Model performance metrics per phage-host prediction tool obtained using their own benchmark data sets, and description of each
prediction methoda

Phage-host prediction
tool Prediction methodb Taxonomic level AUC F1 score Accuracy
SpacePHARER (119) Identifies CRISPR spacers in bacterial genomes,

translates those into protein motifs, and
performs a protein alignment against possible
protospacer motifs from phage sequences; the
prediction is based on a probability score which
selects the host with the higher likelihood.

Phylum 0.87

Class 0.84
Order 0.8
Family 0.79
Genus/species 0.77

CrisprOpenDB pipeline
(120)

Looks for CRISPR spacer matches (alignments) and
applies some filters (no. of gaps, position of the
spacer in the bacterial genome, and taxonomic
accordance between predictions) to make
predictions at the lowest taxonomic levels
possible.

Genus 0.57

WIsH (114) Computes the maximum likelihood of phage P
infecting host H based on the training of a
homogeneous Markov model.

Genus 0.35

Family 0.43c

Order 0.48c

Class 0.6c

Phylum 0.75c

VirHostMatcher (112) Calculates different dissimilarity/similarity measures
based on genomic composition to predict the
host of a given phage. The least dissimilar or the
most similar measure indicates a likely positive
interaction.

Genus 0.33

Family 0.48
Order 0.54
Class 0.67
Phylum 0.75

HostPhinder (115) Predicts the host of a phage as the host of the most
genomically similar phage present in the
reference database. Genomic similarity refers to
how much of the reference is covered by the
query sequence.

Species 0.74

Genus 0.81
Viral Host UnveiLing kit
(vHULK) (124)

Uses protein annotation alignment scores to pVOGs
database to construct the matrix to predict
interaction using a neural network.

Species 0.52

Genus 0.82
Random Forest
Assignment of Hosts
(RaFAH) (113)

Uses the scores obtained from the search of protein
clusters in viral genomes to predict interaction
using a random forest model.

Genus 0.67

Family 0.75
Order 0.78
Class 0.81
Phylum 0.91
Domain 0.99

ILMF-VH (117) Kernelized logistic matrix factorization applied on a
virus-virus network, a host-host network, or a
virus-host network. Each network is computed
based on oligonucleotide frequencies, Gaussian
interaction profile, and previously known virus-
host interactions.

Species 0.92 0.64

(Continued on next page)
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documentation available for installation and implementation. All these tools, with the
exception of ILMF-VH (last updated in 2019), have been updated over the course of
the past year (2020).

RaFAH and HostPhinder are available on SourceForge and Docker, respectively.
PHISDetector and HostPhinder also have web tools available, so these tools may be eas-
ier to apply than the others for users with no previous experience with command lines.
As mentioned above, we recommend using tools trained on supervised machine learn-
ing methods such as RaFAH and PHISDetector when dealing with data derived from
complex communities and complementing the analysis with CRISPR similarity-based
tools (120), as these will allow the researcher to gather more information from the data.

Phage Lifestyle Prediction

In addition to determining whether a phage can interact with a given bacterium, in
microbial communities it is also relevant to identify the type of interaction they have.
Phages can follow many types of different life cycles: (i) lytic, in which they lyse their
cells after using the host machinery to replicate; (ii) temperate, in which phages inte-
grate into the bacterial genome or remain as a circularized DNA portion outside the
bacterial chromosome, propagating each time the bacterial host replicates; (iii) chronic,
similar to the lytic cycle but with the distinction that the phage is not able to lyse the
cell; and (iv) pseudolysogenic, in which the phage remains dormant without propagat-
ing or integrating within the bacterial genome (126). With the lytic and temperate
cycles being the most extensively characterized cycles in nature, there exist random
forest-based tools which use protein similarity scores, such as PHACTS (127), or con-
served protein domain presence, like BACPHILIP (128), to predict the lifestyle of a

TABLE 4 (Continued)

Phage-host prediction
tool Prediction methodb Taxonomic level AUC F1 score Accuracy
VirHostMatcher-Net
(118)

Uses homology-dependent and -independent
features to compare between virus and hosts:
CRISPR matches, homology scores from BLAST,
an alignment-free similarity measure, WIsH
maximum likelihood, comparison between
viruses that infect the same host (SV1) and
viruses infecting different hosts (SV2). The
prediction is based on a Markov random field
model.

Species 0.43

Genus 0.59
Family 0.7
Order 0.78
Class 0.83
Phylum 0.86

PHISDetector (123) Uses 6-mer frequencies, codon usage, prophage
detection, CRISPR matches and protein-protein
interactions information to predict interactions.
The model trained for the prediction is an
ensemble of different machine learning models
(random forest, decision tree, logistic regression,
SVMs with different kernel settings, Gaussian and
Bernoulli naive Bayes).

Genus or species 0.93 0.88 0.88

Host Taxon Predictor
(HTP) (116)

Uses nucleotide sequence information such as
molecule type, mono/dinucleotide absolute
frequencies and di/trinucleotide relative
frequencies to predict if a virus is phage or
nonphage. They have implemented 4 types of
classifiers: logistic regression, quadratic
discriminant analysis, support vector machines,
and k-nearest neighbors.

Domain 0.98 0.93

aNote that the performance metrics are not directly comparable, as different tools were benchmarked with data sets which might or might not be the same.
bSVMs, support vector machines.
cContig-based prediction.
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phage sequence. While these tools have shown good performance, with an F1 score of
.0.8 (128), it is important to note that they were trained on limited data sets, biased
to culturable phage-host pairs, whose interactions are very well described. Therefore,
these tools may not be very accurate for use with novel or distant phage sequences.

MICRODIVERSITY

Microbial populations experience constant genetic changes. Besides being impor-
tant drivers for bacterial evolution, given their capability to promote horizontal gene
transfer, phages undergo several changes within their genomes, leading to a wide col-
lection of mutations that are chosen by natural selection (129). Moreover, the high sub-
stitution rates shown by some viruses in a short time period increase the number of
significant changes within phage genomes, allowing speciation evens and, therefore,
the diversification of the ecosystem (130). It is known that the intrapopulation genetic
variation, or microdiversity, of viruses has an impact in shaping host dynamics.
Furthermore, changes related to an increase in the infection rates and host range
might produce bacterial changes related to resistance against viral infection, generat-
ing antagonistic evolution dynamics (131).

Antagonistic changes have been reported in multiple environments, such as the
human gut (130–132) and marine ecosystems (133). These have been strongly associ-
ated with the maintenance of ecological microbial equilibrium within the human gut
but also with its diversification. Given that most alterations within phage genomes are
related to adaptations to new host strains or the ability to infect strains that are resist-
ant to the infection, an increase in phage populations with new genomic features leads
to the infection of bacterial strains that are usually found in high abundance. This
infection produces a decrease in bacterial population but also a selection pressure that
allows the host to acquire resistance. This pattern leads to the regulation of bacterial
populations and an increase in bacterial adaptation to their new predators (134).
Analogous to this process, elements such as the cyanophages undergo mutations
depending on how optimal their host is. When infecting optimal hosts, phages accu-
mulate few mutations within their genomes. In the opposite case, in which the host is
suboptimal, the number of mutations increases and so does the diversity of viral popu-
lations (135).

Independently of the driver, genomic mutations in viruses from the human gut
have been found to be common in healthy individuals. As described by Minot et al.
(130), even though 80% of viral elements are shown to remain stable over long periods
of time, mutations start to rapidly accumulate within their genomes, driving interindi-
vidual variation. In marine environments, the frequencies of polymorphic sites and
nonsynonymous mutations within housekeeping genes have been found to be depth
dependent, highlighting the importance of genomic variations on modulating viral
functions (136).

Main Approaches

Despite the importance of the dynamics driven by intraspecific variation on differ-
ent environments, microdiversity analysis is considered a recent approach in virome
analysis. Therefore, the development of specific tools to characterize viral microdiver-
sity is still an ongoing process, with few tools already available. Consequently, studies
regarding single nucleotide polymorphism (SNP) calling, calculation of base substitu-
tions, and virome stability within individuals have had to rely on general software and
frameworks for the discovery of variants from NGS data. As proposed by DePristo et al.
(137), a framework for variant calling and genotyping must include at least 3 phases: (i)
manipulation of NGS data, consisting of mapping the reads against the genomes or
contigs of interest, followed by a series of alignment refinement and base quality reca-
libration; (ii) a variant discovery step, in which SNPs, structural variations (SV), and
indels are reported, followed by a genotyping process; and (iii) association analysis and
computation of microdiversity metrics. When applied to virome data, the variant call-
ing process must rely on a well-curated set of contigs, which are expected to have a
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minimum sequencing depth of 5� (134, 138) or 10� (130, 133, 139). Furthermore, in
order for a SNP to be considered valid, it must be supported by at least 4 reads (140).
Likewise, a valid SNP will also depend on the quality call threshold, defined as a Phred-
based value representing the confidence of the presence of a specific variation in a
given site (141). However, to the best of our knowledge, there is no universal reference
value for this metric, implying that the threshold is chosen based on specific character-
istics for each analysis.

To be able to make biological inferences with sequence variant data, multiple met-
rics can be applied. To measure the degree of polymorphism in a given population,
the nucleotide diversity (p ) metric, understood as the average number of differences
found within a specific region of DNA from two different taxa, can be implemented. As
explained by Schloissnig et al. (140), for estimating p between a pair of metagenomic
samples, a variation of the original formula proposed by Begun et al. (142) is made, in
order to include the possibility of having more than two alleles per site. In this case,
the chance of choosing different alleles in a specific and randomly chosen position in
the genome is computed. On the other hand, the fixation index (Fst) is also used for
measuring population differentiation with no changes to the original formula. For ana-
lyzing the effect of natural selection in the virome population, a measure of the ratio
between nonsynonymous and synonymous substitutions is calculated (pN/pS), if all
mutations have the same probability of occurring across the genome (52).

Even though few specific pipelines for viral microdiversity are available at the
moment, those available allow performing the multiple steps involved in a normal
analysis in a straightforward and user-friendly way. For example, MetaPop is described
as a tool for the manipulation and visualization of micro- and macrodiversity-related
data. In fact, it can be run completely via a single command. Furthermore, it imple-
ments multiple metrics, including the ones described above, but also Watterson’s theta
nucleotide diversity, Tajima’s D, and codon usage biases (143). Among the pipelines
designed exclusively for viral sequences, DiversiTools (http://josephhughes.github.io/
DiversiTools/), which was initially developed for the analysis of eukaryotic viruses, can
also be used for virome data in general, by applying pN/pS metrics for comparisons
between samples (136). In contrast to the previous tools, the inStrain pipeline is consid-
ered a suite of programs for analyzing metagenomic data which can be easily applied to
infer exclusively viral dynamics (138) with metrics such as nucleotide diversity, linkage,
pN/pS, and iRep (measure of how fast a population is replicating) and a user-friendly
environment (144).

Microdiversity within viral populations is an important factor when assessing the
dynamics related to the virome of specific ecosystems. These analyses are extremely
useful in longitudinal studies when mutation accumulation rates and temporal succes-
sion are used to evaluate long-term stability within a population (130, 132, 133). Even
though software and frameworks have been adapted for viral communities, new tools
have been developed for making this process faster and more reproducible, which
might lead to an increase in the number of studies regarding this topic in the future.

Selecting a Microdiversity Tool

The decision regarding how to design a microdiversity analysis should prioritize the
bioinformatic expertise of the researcher, rather than the performance of the available
tools, since most of the reported workflows are based on alignment and SNP-calling
software tools that have been benchmarked several times, yielding adequate results.
For generating microdiversity statistics, microbial diversity packages such as Vegan
(145) and Phyloseq (146) can be applied for completing the workflow, but the multiple
changes or differences in the in-house scripts developed for implementing those pack-
ages might lead to reproducibility problems. The standardized pipelines described
above can reduce the chance of making the analysis unreproducible and, therefore,
can be implemented for running the entire analysis or for comparing the results
obtained by the different in-house scripts. Regarding automatic pipelines (i.e.,
MetaPop and inStrain), while we consider that both perform well for generating
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microdiversity inferences and also provide a user-friendly environment for installing
and running the tools, the number of metrics available on MetaPop makes it slightly
more appealing for microdiversity analyses.

CONCLUDING REMARKS

We have presented a brief overview of the tools used for the principal analyses of
phage metagenomic data, namely, assembly and detection of phage and prophage
sequences, annotation, taxonomic classification, host identification, and microdiversity.
As we have shown, the choice of a specific tool must consider not only the approach
employed but also accessibility and the data the researcher is working with, as well as
the degree of support from the developers of the software. As more software is inte-
grated into metagenomic pipelines, the use of these tools should become easier for
the user, regardless of their computational expertise. Moreover, such integration will
allow the simultaneous use of multiple tools, employing different approaches, to
address specific metagenomic problems (e.g., taxonomic classification) in a given
phage data set, allowing the cross-examination of their outputs to determine which
findings are sustained between different tools.

Of notable importance is the growth over recent years in the total number of machine
learning-based tools for different virome procedures. Given the reliance of these tools in
their training data sets, the constant increase in virome data, both simulated and real,
should provide us with better benchmarks of their performance and therefore lead to an
overall improvement of their ability to characterize metagenomic data. Parallel improve-
ments might also be expected from other database-reliant but non-machine learning
tools, such as BLAST- or HMM-based annotation or classification software.

It is also relevant to acknowledge the scarcity of tools and knowledge regarding
ssDNA and RNA phages. Despite the fact that both types of phages have been shown
to be highly abundant in a variety of environments, limitations in experimental proto-
cols for viral isolation and lack of sufficient ssDNA and RNA genomes in databases
have led to a reduced number of isolated sequences (19, 147, 148). The recent work of
Callanan et al. in identification and assembly of ssRNA viruses (148), as well as improve-
ments in experimental techniques and sequencing technologies, provides an exciting
outlook for tapping the diversity of these less known phage clades.
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